
Toward a NIRS Brain Computer Interface
Ilya Sherman, Nikil Viswanathan, and Tony Wu

Dr. Xu Cui and Daniel M. Bryant

1

Abstract
NIRS is a non-invasive spectroscopic method for measuring
oxygenated and deoxygenated hemoglobin concentrations in
cortical regions of the brain. In this report we investigate the
use of machine learning techniques to train a model for online
classification of a specific motor activ ity -- finger tapping --
using NIRS data. Thus, NIRS measurements of blood flow
serve as an indirect proxy for the direct signal -- neural
activity. However, changes in blood flow to and from the
brain are relatively slow; and so there is a significant delay
before the brain activ ity registers at peak level in NIRS output.
Furthermore, the NIRS signal tends to be extremely noisy, as
many factors may play a ro le in the concentration of blood in
the brain. To tackle these problems, we first pre-filter the data
to smooth out the noise, and then compute key features of the
data. We use PCA and greedy feature selection to improve the
robustness of our features and to reduce overfitting. Finally,
we train classifiers using the resulting features to classify
NIRS data as corresponding to periods of idleness or finger
tapping.

1. Introduction

Imagine being able to turn on or off a TV not by pushing a red
button on your remote control, but just by thinking "TV on" or
"TV off". As a first step in the direction of brain computer
interfaces, we are working on using the NIRS brain-imaging
technique to detect a simple, strong brain signal corresponding
to periods of active finger tapping. Data is gathered through a
fairly simple experiment: the subject puts on a NIRS brain
scanner and is periodically instructed to start or stop tapping
her fingers.

Figure 1. NIRS Sensors

The NIRS brain scanner is essentially just a head garment with
sensors that can measure blood flow in different regions of the
brain. Roughly, each pair o f sensors corresponds to one
channel; the diagram on the right shows the sensor and

channel layout for the left hemisphere scanner. For each
channel, the NIRS scanner detects the concentrations of
oxygenated and deoxygenated hemoglobin. This signal is a
pair of real numbers, and is collected with a time resolution of
0.1 seconds. The activity of cortical reg ions of the brain can
also be directly detected by measuring electrical fields.
However, the state-of-the-art technique for measuring such
signals -- the EEG technique -- is far less practical as a signal
source for a brain-computer interface; it is more expensive and
less robust than the NIRS scanner, in that it does not allow
subjects to move around.

The NIRS scanner measures a secondary or derivative signal
rather than the direct source signal of interest. As a brain
region becomes active, it requires energy to maintain its
activity and blood flows into it, bringing oxygenated
hemoglobin. As the oxygen is used up, the hemoglobin
becomes deoxygenated and flows out from the brain reg ion to
be replenished. This is a fairly consistent signal, but it
exhibits an inherent delay, due to the speed of blood flow, in
measuring brain activity.

Our goal in this project is to design an online classifier that
can detect brain activity accurately and with a minimal delay -
- you wouldn't want to have to think "TV on" for ten seconds
straight before the TV actually turned on! The time difference
between when the patient begin tapping and when the
classifier first correctly identifies this is called the onset delay.
Previous work has succeeded in designing classifiers with
very high accuracies, but onset delays in the 3- to 6-second
range [1][2].

2. Baseline
As a very naive baseline, we ran an SVM-based classifier
using only the raw NIRS measurements from channel 13 (the
one that directly measures the cortical region that controls
finger tapping). On the non-noisy data set, this resulted in a
training accuracy of about 73% and an undefined onset/offset
delay. By an "undefined delay", we mean that measuring the
delay doesn't make sense for this baseline: it is unable to even
identify any tapping, much less do it with any form of delay!

Delay Calculation
It is worth noting that establishing a good metric for the
testing delay is itself a nontriv ial task. The delays we present
are computed as follows: For each period of finger tapping
activity, we compute the delay to the earliest subregion L of
duration at least three-quarters of a second, such that our

classifier correctly classified each sample in L positively. We
then take the overall delay to be the mean of the delays over
all periods of finger tapping activity.

3. Classifiers

3.1 SVM
After plotting the raw data following some pre-filtering (see
Section 5), we predicted the feature space would form a
approximately linearly separable data set. For this reason a
majority of our trial runs were conducted using SVM with a
radial basis function kernel, which resulted in a linear
separating hyper-plane. In the end using the right combination
of features History and Grad ient we were able to get a test
accuracy of 85.80% and a delay of 3.44 seconds. We used a
greedy feature selection algorithm in order to get a locally
optimal set of features (See Section 7).
3.2 AdaBoost
As an alternative to the SVM classifier, we t ried using
AdaBoost to see if we could achieve better performance. We
ran two variat ions on the AdaBoost algorithm: Gentle
AdaBoost and Modest AdaBoost [AdaBoost Toolbox], using
decision tree stumps for each. Using only the features
oxygenated and deoxygenated bloodflow as a baseline, we
started off with an accuracy of around 72% (both variations
performing similarly) and, again, and unbounded delay.
However, using all of the reasonable features, filtered through
PCA, gave much better results: Gentle AdaBoost is more
fin icky, prone to overtraining; but with careful parameter
tuning we were able to attain 86.01% test accuracy. With less
careful parameter selection, this variation achieved near-
perfect training set classifcation, but test accuracies closer to
83%. Modest AdaBoost is a variation that is inherently
resistant to overtraining, and pretty much any reasonable
parameter setting gave a test accuracy around 85.5%, with a
similar training accuracy. Both variations resulted in a delay
of about 3.7 seconds. Thus, we found the peak performance of
AdaBoost to be nearly identical to that of SVM. This offers
some evidence that surpassing the present results likely
requires a radically different approach, perhaps with more
focus on pre-processing the data than on novel features or
learning algorithms.

4. Features

Channel Variation
The oxygenated and deoxygenated concentrations from
channel 13 turned out to be the most relevant to predicting
whether the subject was finger tapping, from both a empirical
and theoretical standpoint. However, we found that by using
also the channels adjacent to 13 -- 9, 10, 16, and 17 (see figure
[1]) -- we were able to improve test accuracy from the baseline
by 2% and reduce onset delay by 0.7 seconds.

Gradient Slope/Rate of Change
We looked at slope (rate of change, or first and second
derivatives of the values). In general, changes in bloodflow
through a region of the brain indicates "brain activity" in that
region. By measuring the gradients of the blood flow, the
classifier is able to identify critical transitions more quickly
than it could using a simple threshold. Simply using the
gradient of oxygenated and deoxygenated blood is not helpful
at all on its own (without any pre-filtering).

Figure 2. Optimal SVM Output

Figure 3. Optimal AdaBoost Output

Figure 4. Gradient Features

Ratio of Oxygenated/Deoxygenated Bloodflow
We added this feature as a cross-term between the two signals
we could directly measure, but it only resulted in dramatic
overfitting to the training set (see results in Section 7).

Linear Combinations of Oxygenated and Deoxygenated
Bloodflow
We chose linear combinations of oxygenated and
deoxygenated bloodflow concentration as one of our features,
which worked out fairly well on top of the pre-filtering that we
did. We also took the gradient and second derivatives of these
values and they made (see results in section 7.) somewhat of a
small d ifference in test accuracy.

Classifying with Look-ahead
Though we are u ltimately looking for an on-line algorithm, if
we incorporate future data, we're able to get astounding
accuracy. In fact doing something as simple as taking
oxygenated data set and smoothing it so that the ith timestep is
the average of the next 50 time-steps gives us astounding
results: 90.5% accuracy and 1.5 seconds of delay. We did not
include these results in the table as they're not usable to the
end-product of developing an online algorithm.

Previous Predicted Label
We found that there was a tradeoff between attaining low
delays and high false-positive rates. As one way to balance
these, we tried adding a feature that would introduce a penalty
for changing labels over time. Of course, if we use the actual
label of the previous datapoint as a feature, this gives almost
perfect accuracy, but is not a valid feature for the test set. As a
replacement, we tried substituting the predicted label of the
previous data point. For the training set, we computed this
feature by initializing it to a constant, and then iteratively
running SVM on the training data until the feature values
converged. We then labeled the test data one at a time, and
updated this feature for future data points based on the current
prediction. However, this feature did not end up helping the
performance of the classifier, most likely because it was just
too noisy. A possible direction for further exp loration is to
instead look at the confidence values returned by AdaBoost,
and reject label transitions that have a confidence value less
than a learned threshold.

5. Pre-filtering

NIRS data is inherently noisy, as blood flow through the brain
can be somewhat sporadic. This turned out to be problematic,
as certain features like gradient, depend on a smoothed
surface, and taking the gradient of raw data proved not to be
effective. We exp lored several s moothing techniques that
worked fairly well in reducing the noise. It turns out that
smoothing the data was the singular most effective action in
terms of increasing accuracy and reducing delay.

5.1 Exponential Moving Averages

Running classification techniques naively led to poor results,
and as we examined the feature space, we realized the need for
some type of smoothing of the data. We first smoothed the
data by taking at each timestep t the exponentially weighted
moving average of the previous timesteps and then normalized
the data afterwards. This proved enormously helpful in
smoothing the data and straightening out features such as
gradient and history. Large fluctuations from t imestep to
timestep were removed and we were able to work with a more
natural transformation of the data set. For virtually all of the
features attempted, EMA shifted our accuracy from the 70%
range to the 80% range.

5.2 Other Filtering
We also tried other smoothing techniques such as taking the
average every k points, as well as running a low-frequency
Chebyshev filter (both type 1 and type 2). Both filters had
litt le additional improvement over EMA.

Figure 5. Output without smoothing

Figure 6. Output with smoothing

5.3 Reclassifying Training Data
Another approach we tried was converting a two-class
problem into a three- or a four-class problem. This approach
was motivated by the simple observation that all of the other
approaches we tried either resulted in large delays or in high
false-positive rates. This suggests that early finger tapping
blood flows look qualitatively more like a passive state than
an active state; but perhaps the best clustering of the data
would label these early regions as a distinct transition state,
qualitatively unlike either the passive or the active state. Thus,
we tried relabeling the data so that early periods of finger
tapping belonged to a different class rather than the same
class. We then ran a one-against-one multiclass SVM
classifier using these labels. Finally, we co llapsed early finger
tapping and sustained finger tapping into one class for
evaluating the results. However, this approach proved
ineffective: the accuracies decreased by several percentage
points rather than increasing. One possible reason for this is
that we tried a fairly naive approach for distinguishing
between "early" and "sustained" finger tapping. One
interesting possibility for further explorat ion is to run a
clustering algorithm on the data corresponding to each label,
and assign different sublabels to each cluster.

6. Principle Component Analysis

With 48 channels of raw data, we noticed an increase in
generalization error when adding several features, indicating
overfitting. Additionally when trying to decide which set of
brain data channels to use, we initially used all 48 channels to
figure out the best combination which resulted in each SVM
run taking several minutes. When adding features, we needed
the increase in speed from PCA. We applied PCA as a
postprocessing step on the selected features, chose the first
(sorted by decreasing) k component, which cumulatively
accounted for ~90% of the variance, and then passed the
features projected onto the reduced dimension space (typically
down to 6-8 dimensions) into the classifer. As noted above,
this merely improved the runtime of the SVM classifier, but
actually contributed about 4% to the accuracy of the AdaBoost
classifier.

7. Feature Selection
In order to discover the best set of features to use, we
implemented a greedy feature selection algorithm, using a
heuristic of best accuracy to choose the optimal feature to
add. Though this might result in a local optimum, we noticed
that several of the features had similar performance and that
we achieved (at least locally) optimal perfo rmance with just a
few features.

Feature
(cumulative)

Accuracy
(%)

Delay
(seconds)

Gradient History 77.546 ---

History 78.736 4.55

Gradient Scale 79.238 4.17

OxyData + DeoxyData 79.450 4.09

Oxygenated Data 79.344 4.09

OxyData – DeoxyData 79.450 4.09

Deoxygenated Data 79.503 3.99

Gradient 79.503 3.99

EMA’d Gradient 79.423 3.99

OxyData / DeoxyData 72.944 ---

Feature (cumulative) Accuracy Delay

History 76.699% 5.82

Gradient 85.797% 3.69

Deoxygenated Data 85.745% 3.65

Gradient Sign 85.639% 3.55

Gradient EMA’d 85.480% 3.56

Gradient 85.216% 3.46

OxyData - DeoxyData 85.216% 3.45

OxyData + DeoxyData 85.083% 3.40

Oxygenated Data 85.083% 3.40

OxyData / DeoxyData 72.706% ---

Table 1. Feature Selection Algorithm – With EMA

Table 2. Feature Selection Algorithm – Without EMA

8. Remarks & Commentary

8.1 Which Specific Features

One major insight is that we get approximately the same
accuracy and delay as long as we pick two or three good
features (Gradient, gradient history, OxyData + DeoxyData,
OxyData - DeoxyData, etc). Therefore for the purposes of
reducing delay and/or improving accuracy, which features we
select don't seem to make that big of a d ifference.

8.2 Which classifier

We also found that the specific learn ing algorithm did not
seem to matter too much, except insofar as it can help avoid
overfitting: both the SVM approach and the boosted decision
trees approach indicated a tradeoff between low delays and
low false-positive rates, with similar results attainable using
either approach.

8.3 Pre-filtering makes a big difference

We found that pre-filtering the data was what made the large
difference in jumping from a 72-73% accuracy (Adaboost and
SVM, respectively) to the mid-80% range. Whether it's taking
the fixed weighted average or an exponential moving average,
the smoothing effect allows the classifier to find cleaner
boundaries within the feature-space. Almost all the features
(especially gradient, and gradient direction) suffer huge
fluctuations as the NIRS data is very noisy. So it makes
perfect sense that smoothing will help the classifier achieve
higher accuracies and better delays.
Acknowledgments
We would like to thank Dr. Cui and Daniel Bryant for the
data, advice, and guidance on this project.

Appendix

Definitions

NIRS - Near infrared Spectroscopy. Uses the transmittance of
tissues to detect haemoglobin absorption. This is useful for
tracking blood flow of oxygenated and deoxygenated blood in
the brain. We use this data in order to train on whether the
user is in a state of finger-tapping or not.
Channel - A location on the brain on the brain where NIRS
records bloodflow in a particu lar region. In part icular the
channel we are most interested is channel 13, as that is the
location of where the motor cortex (the reg ion of the cerebral
cortex that controls motor movements). See diagram above.
Onset delay - The difference in time from when the subject
begins tapping to when the machine learn ing algorithm first
classifies the time interval as tapping.
Offset delay - The difference in time from when the subject
stops tapping to when the machine learn ing algorithm first

classifies the time interval as not-tapping.
Accuracy - The percentage of time instances labeled (either
tapping or not tapping) by the algorithm correctly

References
[1] Sitaram, Ranganatha. Caria, Andrea.
Birbaumer, Niels. Hemodynamic b rain–computer interfaces
for communicat ion and rehabilitation

[2] Sitaram, Ranganatha. Zhang, Haihong. Guan, Cuntai.
Thulasidas, Manoj. Temporal classification of mult ichannel
near-infrared spectroscopy signals of motor imagery for
developing a brain–computer interface

[3] Adaboost
Toolbox. http://graphics.cs.msu.ru/ru/science/research/machi
nelearning/adaboosttoolbox

[4] Libsvm Package. http://www.csie.ntu.edu.tw/
cjlin/libsvm/

[5] Exponentially Weighted Moving Average.
http://en.wikipedia.org/wiki/Moving_a verage#Expo
nential_moving_average

[6] Matlab Chebyshev Filter.
http://www.mathworks.com/access/helpdesk/help/to
olbox/signal/cheby1.html

http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox�
http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox�
http://www.csie.ntu.edu.tw/%20cjlin/libsvm/�
http://www.csie.ntu.edu.tw/%20cjlin/libsvm/�
http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average�
http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average�
http://www.mathworks.com/access/helpdesk/help/toolbox/signal/cheby1.html�
http://www.mathworks.com/access/helpdesk/help/toolbox/signal/cheby1.html�

	Abstract
	NIRS is a non-invasive spectroscopic method for measuring oxygenated and deoxygenated hemoglobin concentrations in cortical regions of the brain. In this report we investigate the use of machine learning techniques to train a model for online classifi...
	1. Introduction
	2. Baseline

	As a very naive baseline, we ran an SVM-based classifier using only the raw NIRS measurements from channel 13 (the one that directly measures the cortical region that controls finger tapping). On the non-noisy data set, this resulted in a training acc...
	It is worth noting that establishing a good metric for the testing delay is itself a nontrivial task. The delays we present are computed as follows: For each period of finger tapping activity, we compute the delay to the earliest subregion L of durati...
	3. Classifiers
	3.1 SVM
	3.2 AdaBoost

	4. Features

	Channel Variation
	5. Pre-filtering
	5.1 Exponential Moving Averages
	5.2 Other Filtering
	5.3 Reclassifying Training Data

	6. Principle Component Analysis
	8. Remarks & Commentary
	8.1 Which Specific Features

	One major insight is that we get approximately the same accuracy and delay as long as we pick two or three good features (Gradient, gradient history, OxyData + DeoxyData, OxyData - DeoxyData, etc). Therefore for the purposes of reducing delay and/or i...
	8.2 Which classifier

	We also found that the specific learning algorithm did not seem to matter too much, except insofar as it can help avoid overfitting: both the SVM approach and the boosted decision trees approach indicated a tradeoff between low delays and low false-po...
	8.3 Pre-filtering makes a big difference

	We found that pre-filtering the data was what made the large difference in jumping from a 72-73% accuracy (Adaboost and SVM, respectively) to the mid-80% range. Whether it's taking the fixed weighted average or an exponential moving average, the smoot...
	Acknowledgments
	We would like to thank Dr. Cui and Daniel Bryant for the data, advice, and guidance on this project.
	Appendix
	Definitions

	References

